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Abstract—Traveling Salesman Problem has been one of the most 

discussed and a difficult problem in computer science world. Many 

algorithms have been developed to solve the problem as the 

problem represents many real-life applications. One of its 

applications is to find the most optimal route for an errands service 

courier travel as courier may receive request to visit multiple 

locations in an order. This paper shows how Traveling Salesman 

Problem application may find the shortest route to visit all 

requested locations, specifically using the greedy approach Nearest 

Neighbor Heuristic algorithm. 
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I.   INTRODUCTION 

The increasing dependence on technology today has 

significantly transformed various aspects of our lives. From 

utilizing transport and delivery services to purchasing goods 

from supermarkets and utilizing on-demand service platforms, 

such as Gojek and Grab, the influence of technology is 

pervasive, particularly among the Millennial and Gen Z 

demographics. As we delve into the dynamics of this 

technological dependence and its impact on the transportation 

and logistics sector, it becomes evident that the interplay 

between technology and consumer behavior is reshaping 

traditional business models. 

Growing up in the capital city of Jakarta, the author was 

surprised when she visited her hometown in the small city of 

Purwakarta. Amidst the presence of major startups such as 

Gojek and Grab, a modest enterprise stood out, recognized for 

its service locally known as ‘Jasa Suruh,’ commonly referred to 

as ‘Jasur’. ‘Jasur’ service provides assistance in tasks such as 

ordering food, purchasing necessities, buying medicine at the 

pharmacy, and delivering goods or meals.    

 
Fig. 1. Jasur Logo 

Source: Jasur Purwakarta Facebook Page 

The concept behind 'Jasur' may appear as an attempt to 

compete with large transportation startups. However, 'Jasur' is 

essentially a traditional model of an errands service. Customers 

can request 'Jasur' services by messaging or calling the Jasur 

Official WhatsApp. Unlike single-service models where 

customers can only order a specific service (e.g., food delivery 

or motorcycle taxi service), 'Jasur' offers multiple services 

simultaneously. For instance, a customer can ask 'Jasur' not just 

to buy bakso but also to deliver cake orders to neighbors and 

then pick up their children from school—all in a single order and 

with the same courier. This unique approach distinguishes 'Jasur' 

from the likes of giant startups such as Gojek and Grab. 

Most times, 'Jasur' couriers face the challenge of making 

multiple stops and reaching various locations to fulfill a 

customer's orders. This means that courier must form a Hamilton 

path. In the case of delivering something from the customer and 

getting back again to customer like the example given above, 

courier must form Hamilton circuit. For the sake of efficiency, 

couriers may want to get the best routes to get to all the 

locations, with the fastest time and shortest distance.  

In this paper, the author will use the graph theory and explore 

the traveling salesman problem application with greedy 

approach the Nearest Neighbor algorithm to identify optimal 

routes for ‘Jasur’ courier. 

 

II.  THEORETICAL FRAMEWORK 

A. Graph Definition 

A graph is determined as a mathematical structure that 

represents a particular function by connecting a set of points. It 

is used to create a  pairwise relationship between objects. 

A graph G = (V, E) consists of a nonempty set of vertices (or 

nodes) V = {𝑣1 , 𝑣2 , … , 𝑣n} and a set of edges E = {𝑒1 , 𝑒2 ,… , 

𝑒n}. Each edge has either one or two vertices associated with it, 

called its endpoints. An edge is said to connect its endpoints. 

The set of vertices V of a graph G may be infinite. A graph 

with an infinite vertex set or an infinite number of edges is called 

an infinite graph, and in comparison, a graph with a finite vertex 

set and a finite edge set is called a finite graph, which is 

commonly used. 
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Fig. 2. Graph Example 

Source: [2] 

 

B. Graph Terminologies 

To generalize understanding of graph theory, there are several 

terms used. The terminologies are as follows: 

1. Adjacency 

Two vertices u and v in an undirected graph G are 

called adjacent (or neighbors) in G if u and v are 

endpoints of an edge e of G.  

When (u, v) is an edge of the graph G with directed 

edges, u is said to be adjacent to v and v is said to be 

adjacent from u. The vertex u is called the initial vertex 

of (u, v), and v is called the terminal or end vertex of 

(u, v). The initial vertex and terminal vertex of a loop 

are the same. 

2. Incidence 

An edge e is called incident with the vertices u and v 

if e is said to connect u and v. Formally, edge e = (vj, 

vk), it is said that e is incident to vertex vj and vertex vk. 

3. Isolated Vertex 

A vertex v is said to be isolated if it does not have 

any edges incident to it. 

4. Null Graph 

A graph whose set of edges is an empty set or 

consists solely of isolated vertices is said to be a null 

graph or empty graph. 

5. Degree 

The degree of a vertex in an undirected graph is the 

number of edges incident with it, except that a loop at 

a vertex contributes twice to the degree of that vertex. 

The degree of the vertex v is denoted by deg(v). 

In a graph with directed edges the in-degree of a 

vertex v, denoted by deg-(v), is the number of edges 

with v as their terminal vertex. The out-degree of v, 

denoted by deg+(v), is the number of edges with v as 

their initial vertex.  

6. Path 

A path is a sequence of vertices in a graph where 

each adjacent pair of vertices is connected by an edge. 

A path of length n from the initial vertex v₀ to the 

destination vertex vₙ in the graph G is a sequence 

alternating between vertices and edges in the form v₀, 

e₁, v₁, e₂, v₂, ..., vn-1, en, vn such that e₁ = (v₀, v₁), e₂ = 

(v₁, v₂), ..., en = (vn₋₁, vn) are the edges of the graph G. 

The length of the path is the total number of edges in 

the path. 

7. Circuit 

A circuit or a cycle is a path that starts and ends at 

the same vertex. It forms a closed loop and does not 

have a specific start or end vertex. The length of the 

circuit is the total number of edges in the circuit. 

8. Connectivity 

Two vertices v1 and v2 are said to be connected if 

there is a path from v1 to v2. G is said to be a connected 

graph if for every pair of vertices vi and vj in the set V, 

there exists a path from vi to vj. Otherwise, G is called 

a disconnected graph. 

Two vertices, u and v, in a directed graph G are said 

to be strongly connected if there is a directed path from 

u to v and also a directed path from v to u. If u and v are 

not strongly connected but are connected in their 

underlying undirected graph, then u and v are said to be 

weakly connected. 

9. Subgraph 

A subgraph is a subset of set of vertices end edges of 

a graph. Suppose G = (V, E) is a graph. G1 = (V1, E1) 

is a subgraph of G if V1 ⊆ V and E1 ⊆ E.  

The complement of the subgraph G1 with respect to 

the graph G is the graph G2 = (V2, E2) such that E2 = E 

- E1, and V2 is the set of vertices that are incident to the 

edges in E2. 

The connected components of a graph are the 

maximum number of connected subgraphs within the 

graph G. 

A subgraph G1 = (V1, E1) of G = (V, E) is called a 

spanning subgraph if V1 = V (meaning G1 contains all 

the vertices of G). 

10. Weighted Graph 

A weighted graph is a graph in which each of its 

edges is assigned a value (weight). In a weighted graph, 

the emphasis is on quantifying the relationships 

between vertices, providing additional information 

beyond mere connectivity. 

 

C. Types of Graphs 

Based on the presence or absence of loops or multiple edges 

in a graph, graphs are classified into two types: 

1. Simple graph 

A simple graph is a graph that does not contain loops 

or multiple edges. It means that no two edges connect 

the same pair of vertices. 

2. Unsimple graph 

A graph that contains multiple edges or loops is 

called an unsimple graph. Unsimple graphs further 

divided to two categories: 

a. Multigraph 

A multigraph has multiple edges connected to 

the same vertices. When a single unordered pair 

of vertices {𝑢, 𝑣} is connected by m distinct 

edges, then {𝑢, 𝑣} is an edge with a multiplicity 

of m. 

b. Pseudograph 

A pseudograph has edges that connect a 

vertex to itself, these edges called loops. 

Based on the orientation of edges, graphs are categorized into 

two types: 

1. Undirected Graph 

An undirected graph is a graph in which edges do not 

have a specific direction 
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2. Directed Graph 

A directed graph or diagraph is a graph in which 

each edge is given a specific direction. A directed 

graph (𝑉, 𝐸) consists of a nonempty set of vertices 𝑉 

and a set of directed edges 𝐸. Each directed edge is 

associated with an ordered pair of vertices. Edge with 

the ordered pair {𝑢, 𝑣} is an edge that starts at u and 

ends at v. 

There are also some special types of graphs such as the 

following: 

1. Complete Graph 

A complete graph on n vertices, denoted by Kn, is a 

simple graph that contains exactly one edge between 

each pair of distinct vertices. A simple graph for which 

there is at least one pair of distinct vertex not connected 

by an edge is called noncomplete. The number of edges 

in a complete graph consisting of n vertices is n(n – 

1)/2. 

2. Cycles (Circle Graph) 

A cycle Cn, n ≥ 3, consists of n vertices v1, v2, ..., vn 

and edges {v1, v2}, {v2, v3}, ..., {vn−1, vn}, and {vn, v1}. 

Each vertex in a cycle has a degree of two. 

3. Regular Graph 

A graph in which every vertex has the same degree 

is called a regular graph. If the degree of each vertex is 

denoted as r, then the graph is referred to as a regular 

graph of degree r. The total number of edges in a 

regular graph is nr/2. 

 

D. Graph Representation 

Graphs are often visualized with circles (nodes/vertices) and 

lines (edges), however a method is needed to store graphs in the 

memory of a computer. That is called graph representation. 

There are several ways to represent a graph: 

1. Adjacency List 

One way to represent a graph without multiple edges 

is to list all the edges of this graph. Another way to 

represent a graph with no multiple edges is to use 

adjacency lists, which specify the vertices that are 

adjacent to each vertex of the graph. Representing a 

directed graph can be by listing the initial vertex and 

their terminal vertices. 

2. Incidence Matrix 

Another common way to represent graphs is to use 

incidence matrices. Let G = (V, E) be an undirected 

graph. Suppose that v1, v2, ..., vn are the vertices and e1, 

e2, ..., em are the edges of G. Then the incidence matrix 

with respect to this ordering of V and E is the n × m 

matrix M = [mij], where mij = 1 when edge ej is incident 

with vi, 0 otherwise. 

3. Adjacency Matrix 

Another representation of graph which also the 

author will use in this paper is adjacency matrix.  

The matrix for a directed graph G = (V, E) has a 1 in 

its (i, j)th position if there is an edge from vi to vj, where 

v1, v2, ..., vn is an arbitrary listing of the vertices of the 

directed graph. In other words, if A = [aij] is the 

adjacency matrix for the directed graph with respect to 

this listing of the vertices, then aij = 1 if (vi, vj) is an 

edge of G, 0 otherwise.  

The adjacency matrix for a directed graph does not 

have to be symmetric, because there may not be an 

edge from vj to vi when there is an edge from vi to vj. 

Adjacency matrices can also be used to represent 

directed multigraphs. Again, such matrices are not 

zero–one matrices when there are multiple edges in the 

same direction connecting two vertices. In the 

adjacency matrix for a directed multigraph, aij equals 

the number of edges that are associated to (vi, vj). 

Adjacency matrices can also be used to represent 

weighted graphs. For adjacency matrix A, then aij = x 

if (vi, vj) is an edge of G, and x is the corresponding 

weight of (vi, vj). 

  
Fig. 3. Adjacency Matrix Representation for Weighted 

Graph 

Source: [2] 

 

E. Hamilton Path and Circuit 

This terminology comes from a game, called the Icosian 

puzzle, invented in 1857 by the Irish mathematician Sir William 

Rowan Hamilton.  

A simple path in a graph G that passes through every vertex 

exactly once is called a Hamilton path, and a simple circuit in a 

graph G that passes through every vertex exactly once is called 

a Hamilton circuit. That is, the simple path x0, x1, ..., xn−1, xn in 

the graph G = (V, E) is a Hamilton path if V = {x0, x1, ..., xn−1, xn 

} and xi ≠ xj for 0 ≤  i ≤  j ≤ n, and the simple circuit x0, x1, ..., 

xn−1, xn is a Hamilton circuit if x0, x1, ..., xn−1, xn is a Hamilton 

path. 

If G is a simple graph with n vertices with n ≥ 3 such that the 

degree of every vertex in G is at least n/2, then G has a Hamilton 

circuit. 

If G is a simple graph with n vertices with n ≥ 3 such that 

deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices u and 

v in G, then G has a Hamilton circuit. 

 
Fig. 4. (a) A graph has Hamilton path (b) A graph has 

Hamilton path (c) A graph with no Hamilton Path 

Source: [5] 

 

F. Traveling Salesman Problem 

The traveling salesman problem or TSP is one of the famous 

and difficult computer science problems. This was first 
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formulated in1930 by Karl Menger and since then it became one 

ofthe most studied problems in optimization. The TSP asks for 

the shortest route a traveling salesperson should take to visit a 

set of cities. This problem reduces to finding a Hamilton circuit 

in a complete graph such that the total weight of its edges is as 

small as possible. However, the TSP application is not limited 

to complete graph, and can be implemented to other form of 

graph as long as it has Hamilton circuit. The TSP has many 

applications such as logistics, vehicle routing, and circuit 

design. 

The graph in TSP is represented as a weighted graph. In a 

complete graph consisting of n vertices, there are (n−1)!/2 

Hamiltonian circuits, which means there are (n−1)!/2 different 

routes to visit each city exactly once and return to the starting 

city. Therefore, it is almost impossible to list down all different 

Hamiltonian circuits manually for many vertices. 

Computer scientists developed many approaches and 

algorithms to solve this problem. While none of these are proven 

to be the optimal and perfect solution to the problem, they are a 

good heuristic approach to the solve the TSP problem. Some of 

the algorithms are explained below.  

1. Nearest Neighbor 

This algorithm is a straightforward heuristic 

approach to address TSP. It initiates by randomly 

selecting a city, designating it as the starting point (n0). 

Subsequently, it identifies the nearest unvisited city 

and moves to that location, marking the current city as 

visited. This process repeats until all cities have been 

visited. Once all cities are visited, the algorithm returns 

to the starting city, completing the route. The solution 

involves O(N2 log(N)) iterations, where N represents 

the number of cities to be visited. Notably, the nearest 

neighbor heuristic ensures that the solution remains 

within 25% of the Held-Karp lower bound. 

2. Genetic Algorithm 

The algorithm calculates the fitness function 

measuring quality of tour by using total distance for 

each member (tour) of the population. Then it creates 

new individuals in the population. It uses mutation to 

add randomization to the process. Finally, it selects the 

individual (fittest tour solution) with the higher fitness 

function. Applying genetic algorithm to TSP requires 

certain limitations. Each city should not be repeated, 

and only valid routes are considered. This algorithm 

can handle large number of vertices and explore 

various possible routes, however applying this 

algorithm is often considered expensive and may not 

always find the optimal solution. 

3. Greedy Heuristic Algorithm 

Belonging to the category of heuristic algorithms, 

this algorithm seeks local optima to optimize the best 

local solution for finding global optima. The process 

involves sorting all edges and selecting the edge with 

the minimum cost, continually choosing the best next 

options without forming loops. The computational 

complexity is O(N2 log(N)), and while there is no 

guarantee of a global optimum solution, the greedy 

algorithm terminates in a reasonable number of steps, 

maintaining the solution within 15-20% of the Held-

Karp lower bound. 

4. Branch and Bound Algorithm 

The branch-and-bound algorithm for the traveling 

salesman problem uses a branch-and-bound tree. Every 

node in the branch-and-bound tree has a node number, 

a label (representing the decision made at that node 

either to take or not to take a specific link from one city 

to another), a bound (giving a lower limit on the 

possible lengths of circuits below that node in the tree), 

an incoming matrix, and an opportunity matrix. 

Every matrix (both incoming matrices and 

opportunity matrices) has an associated “L-value,” 

which could be called the “deduction total.” As the 

algorithm progresses, distances in the matrix are 

decreased, and the L-value keeps track of the total 

amount we have subtracted from distances since the 

original distance matrix. 

 

Reference [3] shows the comparison of the heuristic 

algorithms in performing TSP. In this case, although the Greedy 

Heuristic consumes more iterations to solve the TSP, its result 

is the closest to the optimum solution. 

 
Fig. 5. TSP Algorithm Comparison of 100 Cities  

Source: [6] 

 
Fig. 6. TSP Algorithm Comparison of 1000 Cities  

Source: [6] 

 

III.   DISCUSSION 

A. Scope of Discussion 

In this paper, the author uses the map of the center of 

Purwakarta City as reference to list down some of the locations 

that are commonly visited in the city. In this paper, we will use 

ten locations listed down in the table below. 

Table I 

Location Data 

Vertex Location 

1 Purwakarta Station 

2 ‘Mie Gacoan’ 

3 Yogya Department Store 

4 Pasar Rebo Market 

5 ‘Baso Cepot’ 

6 STS Sadang Square 

7 Al Ghazali Primary School 

8 Sambal Hejo SHSD Restaurant 

9 Sadang Sari Housing Complex 

10 R.E. Martadinata Road (House) 
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By performing TSP application, author will analyze the best 

route for ‘Jasur’ courier to visit all the locations needed. In this 

paper, author will implement Nearest Neighbor algorithm to 

solve the traveling salesman problem. 

 

B. Limitations 

In performing TSP application to the problem, there are very 

few factors. In this paper, the author set some limitations to 

make application simpler. Limitations of the discussions are 

listed below: 

1. Weight of the route of two locations only calculated by 

distance of those two locations (distance from Google 

Maps), set aside other factors like traffic. Assuming that 

the shortest route is the quickest route. 

2. Assume all ‘Jasur’ couriers use motorcycles. 

3. Assume all customers use the services in a logical 

manner. 

4. Assume ‘Jasur’ courier doesn’t have to perform a task 

before another. It means courier has no obligation to visit 

one location before other locations and can freely choose 

what task the courier wants to perform first. 

5. Assume the courier is in a certain location when get the 

order, and it is set to be the starting location that needs to 

be chosen. 

6. If the final location needs to be selected, it will be fixed 

point and is not much considered in TSP calculation. 

 

C. Graph Representation 

The author uses adjacency matrix to represent the graph of 

Purwakarta city locations. The distance (in kilometers) will be 

the weight of the edge connecting two vertices (locations). The 

graph is represented in Fig. 7 below. 

 
Fig. 7. Adjacency Matrix Representation of Locations Graph 

Source: Primary 

 

D. Nearest Neighbor Greedy Approach TSP Algorithm 

The algorithm used in this paper to find the best route for 

‘Jasur’ courier is adapted from the greedy approach, Nearest 

Neighbor Algorithm to solve TSP. In addressing the 'Jasur' 

problem, there are two functions designed to manage orders with 

a predetermined final vertex and those without. Despite this 

distinction, the overall algorithmic flow remains remarkably 

similar. 

 
Fig. 8. Initialization of TSP Algorithm  

Source: Primary 

The algorithm takes a graph of locations as a parameter, along 

with a boolean variable, backToStartLoc, indicating whether the 

courier needs to return to the starting location. It utilizes two 

lists: visitedLocationList to track already visited locations and 

route to enumerate the steps indicating the sequence of locations 

to be visited. 

 
Fig. 9. Nearest Neighbor TSP Main Algorithm 

Source: Primary 

The algorithm selects the nearest location from the starting 

point by traversing the list of locations in the graph. Upon 

identifying the nearest location, the distance is added to the 

sumDistance, and that location is then set as the current location 

to initiate the search for the next nearest location. This loop 

process continues until all locations have been visited.  

 
Fig. 10. Go Back to Start Location Option Algorithm 

Source: Primary 

If the courier needs to return to the starting location, the 

algorithm will designate the last location in the route as the 

starting location.  

 
Fig. 11. Final Location Option Algorithm 

Source: Primary 

In cases where the courier needs to reach a particular location 

at the end of the travel, the algorithm will assign the second-to-

last location in the route to this specific destination. 
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E. Greedy Approach TSP Experiment in ‘Jasur’ Route 

Optimization 

Let’s apply our algorithm to evaluate two 'Jasur' route 

optimization scenarios.  

In the first case, a courier receives orders to purchase 'Mie 

Gacoan’, buy household supplies from Yogya Department 

Store, and deliver them to a customer's house on R. E. 

Martadinata Road. Additionally, the courier is tasked with 

picking up a customer's child from Al Ghazali Primary School 

and bringing them home. The courier is initially at ‘Baso Cepot’ 

after previous work, and he doesn’t need to go back to ‘Baso 

Cepot’ again.  

 
Fig. 12. First Case of ‘Jasur’ Route Optimization 

Source: Primary 

For optimal efficiency, the algorithm recommends the courier 

to first purchase supplies at Yogya Department Store, followed 

by picking up the child from school, then buying 'Mie Gacoan,' 

and finally delivering all items to the house on R. E. Martadinata 

Road. The total distance traveled is 6 km. 

 
Fig. 0. Filtered Locations Graph of Forst Case  

Source: Primary 

If we were to employ a brute-force approach to identify the 

shortest Hamiltonian path, we would need to explore 3! = 6 

possible routes. The author reordered the locations manually, 

and the resulting data is presented in Table II. The comparison 

reveals the algorithm's accuracy when contrasted with the 

manually generated brute-force ordering. 

Table II 

First Case of ‘Jasur’ Route Possibility 

Route Distance 

5 – 2 – 3 – 7 – 10 7.9 km 

5 – 2 – 7 – 3 – 10 6.2 km 

5 – 3 – 2 – 7 – 10 6.1 km 

5 – 3 – 7 – 2 – 10 6.0 km 

5 – 7 – 2 – 3 – 10 6.6 km 

5 – 7 – 3 – 2 – 10 7.5 km 

In the second case, a courier receives orders while he is in 

front of SHSD Sambal Hejo Sambal Dadak Restaurant in 

Ciganea. He needs to pick up the customer in Purwakarta Station 

and take him to his house in Sadang Sari Housing Complex. The 

customer wants to make a surprise home so he wants to buy 

many things before getting home. He needs to buy some food in 

STS Sadang Square, ‘Baso Cepot’, and buy some new cloth in 

Pasar Rebo Market before taking the customer home. He needs 

to go back to SHSD Restaurant because he has work there after 

doing errands. 

 
Fig. 13. Second Case of ‘Jasur’ Route Optimization 

Source: Primary 

For optimal efficiency, the algorithm recommends the courier 

to first buy ‘Baso Cepot’, followed by purchasing new cloth in 

Pasar Rebo Market. The courier then picks up the customer from 

Purwakarta Station, taking him to his house in Sadang Sari 

Housing Complex while making one stop in STS Sadang Square 

to buy some food. Finally, he needs to get back to SHSD 

Restaurant. The total distance traveled is 19.05 km. 

 
Fig. 14. Filtered Locations Graph of Second Case  

Source: Primary 

If we use brute force to find the shortest Hamilton path, we 

will have to find 4! = 24 possible routes. By reordering the 

location manually, the author gets the data in Table III. It shows 

our algorithm result match the result from manual ordering. 

Table III 

Second Case of ‘Jasur’ Route Possibility 

Route Distance 

8 – 1 – 4 – 5 – 6 – 9– 8 21.25 km 

8 – 1 – 4 – 6 – 5 – 9– 8 34.90 km 

8 – 1 – 5 – 4 – 6 – 9– 8 20.38 km 

8 – 1 – 5– 6 – 4 – 9– 8 34.80 km 

8 – 1 – 6 – 4 – 5 – 9– 8 33.10 km 

8 – 1 – 6 – 5 – 4 – 9– 8 32.50 km 
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8 – 4 – 1 – 5 – 6 – 9– 8 21.45 km 

8 – 4 – 1 – 6 – 5 – 9– 8 33.50 km 

8 – 4 – 5 – 1 – 6 – 9– 8 19.35 km 

8 – 4 – 5 – 6 – 1 – 9– 8 31.40 km 

8 – 4 – 6 – 1 – 5 – 9– 8 33.00 km 

8 – 4 – 6 – 5 – 1 – 9– 8 33.00 km 

8 – 5 – 1 – 4 – 6 – 9– 8 21.05 km 

8 – 5 – 1 – 6 – 4 – 9– 8 33.00 km 

8 – 5 – 4 – 1 – 6 – 9– 8 19.05 km 

8 – 5 – 4 – 6 – 1 – 9– 8 30.60 km 

8 – 5 – 6 – 1 – 4 – 9– 8 33.20 km 

8 – 5 – 6 – 4 – 1 – 9– 8 33.40 km 

8 – 6 – 1 – 4 – 5 – 9– 8 28.70 km 

8 – 6 – 1 – 5 – 4 – 9– 8 27.90 km 

8 – 6 – 4 – 1 – 5 – 9– 8 34.10 km 

8 – 6 – 4 – 5 – 1 – 9– 8 32.00 km 

8 – 6 – 5 – 1 – 4 – 9– 8 33.90 km 

8 – 6 – 5 – 4 – 1 – 9– 8 31.80 km 

Although it will most likely not to be a case for ‘Jasur’ route 

optimization problem, the author tries to solve the original 

traveling salesman problem where salesman need to visit all 

location in the city. Applying the algorithm to all ten locations 

in Purwakarta City, the author gets that one can travel to all ten 

locations only with 19.85 km distance by starting at Yogya 

Department Store. 

 
Fig. 14. Finding the Shortest Hamilton Circuit 

Source: Primary 

 

\ 

 

 

Table IV 

Finding Shortest Hamilton Circuit 

Starting Location Distance 

Purwakarta Station 20.45 km 

‘Mie Gacoan’ 20.25 km 

Yogya Department Store 19.05 km 

Pasar Rebo Market 23.35 km 

‘Baso Cepot’ 24.70 km 

STS Sadang Square 21.35 km 

Al Ghazali Primary School 21.25 km 

Sambal Hejo SHSD Restaurant 24.70 km 

Sadang Sari Housing Complex 20.25 km 

R.E. Martadinata Road (House) 24.60 km 

Fortunately, the outcomes of both cases align with the 

manually ordered result. However, it's noteworthy that the 

algorithmic results may not always be the most optimal, given 

that the Nearest Neighbor Algorithm operates as a greedy 

approach for solving the traveling salesman problem. This 

approach focuses on selecting the best option at each step 

without considering potential superior route possibilities in the 

subsequent steps. 

As the number of locations visited increases, manual ordering 

becomes impractical for humans. Even computers, when tasked 

with manual ordering, face the challenge of dealing with O(n!) 

complexity to obtain the most optimal routes. Hence, algorithms 

like this are developed to provide efficient solutions to such 

problems. 

 

V.   CONCLUSION 

Based on the discussion and experimentation with the 

provided cases, it can be concluded that the Traveling Salesman 

Problem algorithm proves beneficial in determining the most 

optimal route for the 'Jasur' errands service with multiple stops. 

This optimization aids couriers in fulfilling customer requests 

more swiftly and cost-effectively. 

Given the constraints of limited time, capabilities, and 

resources, this paper has inherent limitations and a narrow 

scope, leaving ample room for enhancements and further 

development. Exploring alternative TSP approaches, such as the 

Greedy Heuristic Algorithm, Branch and Bound Algorithm, or 

other modern techniques, may yield more optimal route 

suggestions for a larger number of locations or vertices. 

Additionally, addressing the problem in real-time with 

considerations for factors like traffic, market crowd, or 

congestion could enhance the overall solution. 

 

VI.   APPENDIX 

The algorithm used in this paper can be accessed through 

https://github.com/shulhajws/JasurRouteOptimization.git 
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