
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Traveling Salesman Problem Application for ‘Jasur

Errands Service’ Courier Travel Optimization in

Purwakarta City

Shulha - 13522087

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522087@std.stei.itb.ac.id

Abstract—Traveling Salesman Problem has been one of the most

discussed and a difficult problem in computer science world. Many

algorithms have been developed to solve the problem as the

problem represents many real-life applications. One of its

applications is to find the most optimal route for an errands service

courier travel as courier may receive request to visit multiple

locations in an order. This paper shows how Traveling Salesman

Problem application may find the shortest route to visit all

requested locations, specifically using the greedy approach Nearest

Neighbor Heuristic algorithm.

Keywords—Errands Service, Nearest Neighbor Algorithm,

Traveling Salesman Problem, Travel Optimization

I. INTRODUCTION

The increasing dependence on technology today has

significantly transformed various aspects of our lives. From

utilizing transport and delivery services to purchasing goods

from supermarkets and utilizing on-demand service platforms,

such as Gojek and Grab, the influence of technology is

pervasive, particularly among the Millennial and Gen Z

demographics. As we delve into the dynamics of this

technological dependence and its impact on the transportation

and logistics sector, it becomes evident that the interplay

between technology and consumer behavior is reshaping

traditional business models.

Growing up in the capital city of Jakarta, the author was

surprised when she visited her hometown in the small city of

Purwakarta. Amidst the presence of major startups such as

Gojek and Grab, a modest enterprise stood out, recognized for

its service locally known as ‘Jasa Suruh,’ commonly referred to

as ‘Jasur’. ‘Jasur’ service provides assistance in tasks such as

ordering food, purchasing necessities, buying medicine at the

pharmacy, and delivering goods or meals.

Fig. 1. Jasur Logo

Source: Jasur Purwakarta Facebook Page

The concept behind 'Jasur' may appear as an attempt to

compete with large transportation startups. However, 'Jasur' is

essentially a traditional model of an errands service. Customers

can request 'Jasur' services by messaging or calling the Jasur

Official WhatsApp. Unlike single-service models where

customers can only order a specific service (e.g., food delivery

or motorcycle taxi service), 'Jasur' offers multiple services

simultaneously. For instance, a customer can ask 'Jasur' not just

to buy bakso but also to deliver cake orders to neighbors and

then pick up their children from school—all in a single order and

with the same courier. This unique approach distinguishes 'Jasur'

from the likes of giant startups such as Gojek and Grab.

Most times, 'Jasur' couriers face the challenge of making

multiple stops and reaching various locations to fulfill a

customer's orders. This means that courier must form a Hamilton

path. In the case of delivering something from the customer and

getting back again to customer like the example given above,

courier must form Hamilton circuit. For the sake of efficiency,

couriers may want to get the best routes to get to all the

locations, with the fastest time and shortest distance.

In this paper, the author will use the graph theory and explore

the traveling salesman problem application with greedy

approach the Nearest Neighbor algorithm to identify optimal

routes for ‘Jasur’ courier.

II. THEORETICAL FRAMEWORK

A. Graph Definition

A graph is determined as a mathematical structure that

represents a particular function by connecting a set of points. It

is used to create a pairwise relationship between objects.

A graph G = (V, E) consists of a nonempty set of vertices (or

nodes) V = {𝑣1 , 𝑣2 , … , 𝑣n} and a set of edges E = {𝑒1 , 𝑒2 ,… ,

𝑒n}. Each edge has either one or two vertices associated with it,

called its endpoints. An edge is said to connect its endpoints.

The set of vertices V of a graph G may be infinite. A graph

with an infinite vertex set or an infinite number of edges is called

an infinite graph, and in comparison, a graph with a finite vertex

set and a finite edge set is called a finite graph, which is

commonly used.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 2. Graph Example

Source: [2]

B. Graph Terminologies

To generalize understanding of graph theory, there are several

terms used. The terminologies are as follows:

1. Adjacency

Two vertices u and v in an undirected graph G are

called adjacent (or neighbors) in G if u and v are

endpoints of an edge e of G.

When (u, v) is an edge of the graph G with directed

edges, u is said to be adjacent to v and v is said to be

adjacent from u. The vertex u is called the initial vertex

of (u, v), and v is called the terminal or end vertex of

(u, v). The initial vertex and terminal vertex of a loop

are the same.

2. Incidence

An edge e is called incident with the vertices u and v

if e is said to connect u and v. Formally, edge e = (vj,

vk), it is said that e is incident to vertex vj and vertex vk.

3. Isolated Vertex

A vertex v is said to be isolated if it does not have

any edges incident to it.

4. Null Graph

A graph whose set of edges is an empty set or

consists solely of isolated vertices is said to be a null

graph or empty graph.

5. Degree

The degree of a vertex in an undirected graph is the

number of edges incident with it, except that a loop at

a vertex contributes twice to the degree of that vertex.

The degree of the vertex v is denoted by deg(v).

In a graph with directed edges the in-degree of a

vertex v, denoted by deg-(v), is the number of edges

with v as their terminal vertex. The out-degree of v,

denoted by deg+(v), is the number of edges with v as

their initial vertex.

6. Path

A path is a sequence of vertices in a graph where

each adjacent pair of vertices is connected by an edge.

A path of length n from the initial vertex v₀ to the

destination vertex vₙ in the graph G is a sequence

alternating between vertices and edges in the form v₀,

e₁, v₁, e₂, v₂, ..., vn-1, en, vn such that e₁ = (v₀, v₁), e₂ =

(v₁, v₂), ..., en = (vn₋₁, vn) are the edges of the graph G.

The length of the path is the total number of edges in

the path.

7. Circuit

A circuit or a cycle is a path that starts and ends at

the same vertex. It forms a closed loop and does not

have a specific start or end vertex. The length of the

circuit is the total number of edges in the circuit.

8. Connectivity

Two vertices v1 and v2 are said to be connected if

there is a path from v1 to v2. G is said to be a connected

graph if for every pair of vertices vi and vj in the set V,

there exists a path from vi to vj. Otherwise, G is called

a disconnected graph.

Two vertices, u and v, in a directed graph G are said

to be strongly connected if there is a directed path from

u to v and also a directed path from v to u. If u and v are

not strongly connected but are connected in their

underlying undirected graph, then u and v are said to be

weakly connected.

9. Subgraph

A subgraph is a subset of set of vertices end edges of

a graph. Suppose G = (V, E) is a graph. G1 = (V1, E1)

is a subgraph of G if V1 ⊆ V and E1 ⊆ E.

The complement of the subgraph G1 with respect to

the graph G is the graph G2 = (V2, E2) such that E2 = E

- E1, and V2 is the set of vertices that are incident to the

edges in E2.

The connected components of a graph are the

maximum number of connected subgraphs within the

graph G.

A subgraph G1 = (V1, E1) of G = (V, E) is called a

spanning subgraph if V1 = V (meaning G1 contains all

the vertices of G).

10. Weighted Graph

A weighted graph is a graph in which each of its

edges is assigned a value (weight). In a weighted graph,

the emphasis is on quantifying the relationships

between vertices, providing additional information

beyond mere connectivity.

C. Types of Graphs

Based on the presence or absence of loops or multiple edges

in a graph, graphs are classified into two types:

1. Simple graph

A simple graph is a graph that does not contain loops

or multiple edges. It means that no two edges connect

the same pair of vertices.

2. Unsimple graph

A graph that contains multiple edges or loops is

called an unsimple graph. Unsimple graphs further

divided to two categories:

a. Multigraph

A multigraph has multiple edges connected to

the same vertices. When a single unordered pair

of vertices {𝑢, 𝑣} is connected by m distinct

edges, then {𝑢, 𝑣} is an edge with a multiplicity

of m.

b. Pseudograph

A pseudograph has edges that connect a

vertex to itself, these edges called loops.

Based on the orientation of edges, graphs are categorized into

two types:

1. Undirected Graph

An undirected graph is a graph in which edges do not

have a specific direction

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

2. Directed Graph

A directed graph or diagraph is a graph in which

each edge is given a specific direction. A directed

graph (𝑉, 𝐸) consists of a nonempty set of vertices 𝑉

and a set of directed edges 𝐸. Each directed edge is

associated with an ordered pair of vertices. Edge with

the ordered pair {𝑢, 𝑣} is an edge that starts at u and

ends at v.

There are also some special types of graphs such as the

following:

1. Complete Graph

A complete graph on n vertices, denoted by Kn, is a

simple graph that contains exactly one edge between

each pair of distinct vertices. A simple graph for which

there is at least one pair of distinct vertex not connected

by an edge is called noncomplete. The number of edges

in a complete graph consisting of n vertices is n(n –

1)/2.

2. Cycles (Circle Graph)

A cycle Cn, n ≥ 3, consists of n vertices v1, v2, ..., vn

and edges {v1, v2}, {v2, v3}, ..., {vn−1, vn}, and {vn, v1}.

Each vertex in a cycle has a degree of two.

3. Regular Graph

A graph in which every vertex has the same degree

is called a regular graph. If the degree of each vertex is

denoted as r, then the graph is referred to as a regular

graph of degree r. The total number of edges in a

regular graph is nr/2.

D. Graph Representation

Graphs are often visualized with circles (nodes/vertices) and

lines (edges), however a method is needed to store graphs in the

memory of a computer. That is called graph representation.

There are several ways to represent a graph:

1. Adjacency List

One way to represent a graph without multiple edges

is to list all the edges of this graph. Another way to

represent a graph with no multiple edges is to use

adjacency lists, which specify the vertices that are

adjacent to each vertex of the graph. Representing a

directed graph can be by listing the initial vertex and

their terminal vertices.

2. Incidence Matrix

Another common way to represent graphs is to use

incidence matrices. Let G = (V, E) be an undirected

graph. Suppose that v1, v2, ..., vn are the vertices and e1,

e2, ..., em are the edges of G. Then the incidence matrix

with respect to this ordering of V and E is the n × m

matrix M = [mij], where mij = 1 when edge ej is incident

with vi, 0 otherwise.

3. Adjacency Matrix

Another representation of graph which also the

author will use in this paper is adjacency matrix.

The matrix for a directed graph G = (V, E) has a 1 in

its (i, j)th position if there is an edge from vi to vj, where

v1, v2, ..., vn is an arbitrary listing of the vertices of the

directed graph. In other words, if A = [aij] is the

adjacency matrix for the directed graph with respect to

this listing of the vertices, then aij = 1 if (vi, vj) is an

edge of G, 0 otherwise.

The adjacency matrix for a directed graph does not

have to be symmetric, because there may not be an

edge from vj to vi when there is an edge from vi to vj.

Adjacency matrices can also be used to represent

directed multigraphs. Again, such matrices are not

zero–one matrices when there are multiple edges in the

same direction connecting two vertices. In the

adjacency matrix for a directed multigraph, aij equals

the number of edges that are associated to (vi, vj).

Adjacency matrices can also be used to represent

weighted graphs. For adjacency matrix A, then aij = x

if (vi, vj) is an edge of G, and x is the corresponding

weight of (vi, vj).

Fig. 3. Adjacency Matrix Representation for Weighted

Graph

Source: [2]

E. Hamilton Path and Circuit

This terminology comes from a game, called the Icosian

puzzle, invented in 1857 by the Irish mathematician Sir William

Rowan Hamilton.

A simple path in a graph G that passes through every vertex

exactly once is called a Hamilton path, and a simple circuit in a

graph G that passes through every vertex exactly once is called

a Hamilton circuit. That is, the simple path x0, x1, ..., xn−1, xn in

the graph G = (V, E) is a Hamilton path if V = {x0, x1, ..., xn−1, xn

} and xi ≠ xj for 0 ≤ i ≤ j ≤ n, and the simple circuit x0, x1, ...,

xn−1, xn is a Hamilton circuit if x0, x1, ..., xn−1, xn is a Hamilton

path.

If G is a simple graph with n vertices with n ≥ 3 such that the

degree of every vertex in G is at least n/2, then G has a Hamilton

circuit.

If G is a simple graph with n vertices with n ≥ 3 such that

deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices u and

v in G, then G has a Hamilton circuit.

Fig. 4. (a) A graph has Hamilton path (b) A graph has

Hamilton path (c) A graph with no Hamilton Path

Source: [5]

F. Traveling Salesman Problem

The traveling salesman problem or TSP is one of the famous

and difficult computer science problems. This was first

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

formulated in1930 by Karl Menger and since then it became one

ofthe most studied problems in optimization. The TSP asks for

the shortest route a traveling salesperson should take to visit a

set of cities. This problem reduces to finding a Hamilton circuit

in a complete graph such that the total weight of its edges is as

small as possible. However, the TSP application is not limited

to complete graph, and can be implemented to other form of

graph as long as it has Hamilton circuit. The TSP has many

applications such as logistics, vehicle routing, and circuit

design.

The graph in TSP is represented as a weighted graph. In a

complete graph consisting of n vertices, there are (n−1)!/2

Hamiltonian circuits, which means there are (n−1)!/2 different

routes to visit each city exactly once and return to the starting

city. Therefore, it is almost impossible to list down all different

Hamiltonian circuits manually for many vertices.

Computer scientists developed many approaches and

algorithms to solve this problem. While none of these are proven

to be the optimal and perfect solution to the problem, they are a

good heuristic approach to the solve the TSP problem. Some of

the algorithms are explained below.

1. Nearest Neighbor

This algorithm is a straightforward heuristic

approach to address TSP. It initiates by randomly

selecting a city, designating it as the starting point (n0).

Subsequently, it identifies the nearest unvisited city

and moves to that location, marking the current city as

visited. This process repeats until all cities have been

visited. Once all cities are visited, the algorithm returns

to the starting city, completing the route. The solution

involves O(N2 log(N)) iterations, where N represents

the number of cities to be visited. Notably, the nearest

neighbor heuristic ensures that the solution remains

within 25% of the Held-Karp lower bound.

2. Genetic Algorithm

The algorithm calculates the fitness function

measuring quality of tour by using total distance for

each member (tour) of the population. Then it creates

new individuals in the population. It uses mutation to

add randomization to the process. Finally, it selects the

individual (fittest tour solution) with the higher fitness

function. Applying genetic algorithm to TSP requires

certain limitations. Each city should not be repeated,

and only valid routes are considered. This algorithm

can handle large number of vertices and explore

various possible routes, however applying this

algorithm is often considered expensive and may not

always find the optimal solution.

3. Greedy Heuristic Algorithm

Belonging to the category of heuristic algorithms,

this algorithm seeks local optima to optimize the best

local solution for finding global optima. The process

involves sorting all edges and selecting the edge with

the minimum cost, continually choosing the best next

options without forming loops. The computational

complexity is O(N2 log(N)), and while there is no

guarantee of a global optimum solution, the greedy

algorithm terminates in a reasonable number of steps,

maintaining the solution within 15-20% of the Held-

Karp lower bound.

4. Branch and Bound Algorithm

The branch-and-bound algorithm for the traveling

salesman problem uses a branch-and-bound tree. Every

node in the branch-and-bound tree has a node number,

a label (representing the decision made at that node

either to take or not to take a specific link from one city

to another), a bound (giving a lower limit on the

possible lengths of circuits below that node in the tree),

an incoming matrix, and an opportunity matrix.

Every matrix (both incoming matrices and

opportunity matrices) has an associated “L-value,”

which could be called the “deduction total.” As the

algorithm progresses, distances in the matrix are

decreased, and the L-value keeps track of the total

amount we have subtracted from distances since the

original distance matrix.

Reference [3] shows the comparison of the heuristic

algorithms in performing TSP. In this case, although the Greedy

Heuristic consumes more iterations to solve the TSP, its result

is the closest to the optimum solution.

Fig. 5. TSP Algorithm Comparison of 100 Cities

Source: [6]

Fig. 6. TSP Algorithm Comparison of 1000 Cities

Source: [6]

III. DISCUSSION

A. Scope of Discussion

In this paper, the author uses the map of the center of

Purwakarta City as reference to list down some of the locations

that are commonly visited in the city. In this paper, we will use

ten locations listed down in the table below.

Table I

Location Data

Vertex Location

1 Purwakarta Station

2 ‘Mie Gacoan’

3 Yogya Department Store

4 Pasar Rebo Market

5 ‘Baso Cepot’

6 STS Sadang Square

7 Al Ghazali Primary School

8 Sambal Hejo SHSD Restaurant

9 Sadang Sari Housing Complex

10 R.E. Martadinata Road (House)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

By performing TSP application, author will analyze the best

route for ‘Jasur’ courier to visit all the locations needed. In this

paper, author will implement Nearest Neighbor algorithm to

solve the traveling salesman problem.

B. Limitations

In performing TSP application to the problem, there are very

few factors. In this paper, the author set some limitations to

make application simpler. Limitations of the discussions are

listed below:

1. Weight of the route of two locations only calculated by

distance of those two locations (distance from Google

Maps), set aside other factors like traffic. Assuming that

the shortest route is the quickest route.

2. Assume all ‘Jasur’ couriers use motorcycles.

3. Assume all customers use the services in a logical

manner.

4. Assume ‘Jasur’ courier doesn’t have to perform a task

before another. It means courier has no obligation to visit

one location before other locations and can freely choose

what task the courier wants to perform first.

5. Assume the courier is in a certain location when get the

order, and it is set to be the starting location that needs to

be chosen.

6. If the final location needs to be selected, it will be fixed

point and is not much considered in TSP calculation.

C. Graph Representation

The author uses adjacency matrix to represent the graph of

Purwakarta city locations. The distance (in kilometers) will be

the weight of the edge connecting two vertices (locations). The

graph is represented in Fig. 7 below.

Fig. 7. Adjacency Matrix Representation of Locations Graph

Source: Primary

D. Nearest Neighbor Greedy Approach TSP Algorithm

The algorithm used in this paper to find the best route for

‘Jasur’ courier is adapted from the greedy approach, Nearest

Neighbor Algorithm to solve TSP. In addressing the 'Jasur'

problem, there are two functions designed to manage orders with

a predetermined final vertex and those without. Despite this

distinction, the overall algorithmic flow remains remarkably

similar.

Fig. 8. Initialization of TSP Algorithm

Source: Primary

The algorithm takes a graph of locations as a parameter, along

with a boolean variable, backToStartLoc, indicating whether the

courier needs to return to the starting location. It utilizes two

lists: visitedLocationList to track already visited locations and

route to enumerate the steps indicating the sequence of locations

to be visited.

Fig. 9. Nearest Neighbor TSP Main Algorithm

Source: Primary

The algorithm selects the nearest location from the starting

point by traversing the list of locations in the graph. Upon

identifying the nearest location, the distance is added to the

sumDistance, and that location is then set as the current location

to initiate the search for the next nearest location. This loop

process continues until all locations have been visited.

Fig. 10. Go Back to Start Location Option Algorithm

Source: Primary

If the courier needs to return to the starting location, the

algorithm will designate the last location in the route as the

starting location.

Fig. 11. Final Location Option Algorithm

Source: Primary

In cases where the courier needs to reach a particular location

at the end of the travel, the algorithm will assign the second-to-

last location in the route to this specific destination.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

E. Greedy Approach TSP Experiment in ‘Jasur’ Route

Optimization

Let’s apply our algorithm to evaluate two 'Jasur' route

optimization scenarios.

In the first case, a courier receives orders to purchase 'Mie

Gacoan’, buy household supplies from Yogya Department

Store, and deliver them to a customer's house on R. E.

Martadinata Road. Additionally, the courier is tasked with

picking up a customer's child from Al Ghazali Primary School

and bringing them home. The courier is initially at ‘Baso Cepot’

after previous work, and he doesn’t need to go back to ‘Baso

Cepot’ again.

Fig. 12. First Case of ‘Jasur’ Route Optimization

Source: Primary

For optimal efficiency, the algorithm recommends the courier

to first purchase supplies at Yogya Department Store, followed

by picking up the child from school, then buying 'Mie Gacoan,'

and finally delivering all items to the house on R. E. Martadinata

Road. The total distance traveled is 6 km.

Fig. 0. Filtered Locations Graph of Forst Case

Source: Primary

If we were to employ a brute-force approach to identify the

shortest Hamiltonian path, we would need to explore 3! = 6

possible routes. The author reordered the locations manually,

and the resulting data is presented in Table II. The comparison

reveals the algorithm's accuracy when contrasted with the

manually generated brute-force ordering.

Table II

First Case of ‘Jasur’ Route Possibility

Route Distance

5 – 2 – 3 – 7 – 10 7.9 km

5 – 2 – 7 – 3 – 10 6.2 km

5 – 3 – 2 – 7 – 10 6.1 km

5 – 3 – 7 – 2 – 10 6.0 km

5 – 7 – 2 – 3 – 10 6.6 km

5 – 7 – 3 – 2 – 10 7.5 km

In the second case, a courier receives orders while he is in

front of SHSD Sambal Hejo Sambal Dadak Restaurant in

Ciganea. He needs to pick up the customer in Purwakarta Station

and take him to his house in Sadang Sari Housing Complex. The

customer wants to make a surprise home so he wants to buy

many things before getting home. He needs to buy some food in

STS Sadang Square, ‘Baso Cepot’, and buy some new cloth in

Pasar Rebo Market before taking the customer home. He needs

to go back to SHSD Restaurant because he has work there after

doing errands.

Fig. 13. Second Case of ‘Jasur’ Route Optimization

Source: Primary

For optimal efficiency, the algorithm recommends the courier

to first buy ‘Baso Cepot’, followed by purchasing new cloth in

Pasar Rebo Market. The courier then picks up the customer from

Purwakarta Station, taking him to his house in Sadang Sari

Housing Complex while making one stop in STS Sadang Square

to buy some food. Finally, he needs to get back to SHSD

Restaurant. The total distance traveled is 19.05 km.

Fig. 14. Filtered Locations Graph of Second Case

Source: Primary

If we use brute force to find the shortest Hamilton path, we

will have to find 4! = 24 possible routes. By reordering the

location manually, the author gets the data in Table III. It shows

our algorithm result match the result from manual ordering.

Table III

Second Case of ‘Jasur’ Route Possibility

Route Distance

8 – 1 – 4 – 5 – 6 – 9– 8 21.25 km

8 – 1 – 4 – 6 – 5 – 9– 8 34.90 km

8 – 1 – 5 – 4 – 6 – 9– 8 20.38 km

8 – 1 – 5– 6 – 4 – 9– 8 34.80 km

8 – 1 – 6 – 4 – 5 – 9– 8 33.10 km

8 – 1 – 6 – 5 – 4 – 9– 8 32.50 km

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

8 – 4 – 1 – 5 – 6 – 9– 8 21.45 km

8 – 4 – 1 – 6 – 5 – 9– 8 33.50 km

8 – 4 – 5 – 1 – 6 – 9– 8 19.35 km

8 – 4 – 5 – 6 – 1 – 9– 8 31.40 km

8 – 4 – 6 – 1 – 5 – 9– 8 33.00 km

8 – 4 – 6 – 5 – 1 – 9– 8 33.00 km

8 – 5 – 1 – 4 – 6 – 9– 8 21.05 km

8 – 5 – 1 – 6 – 4 – 9– 8 33.00 km

8 – 5 – 4 – 1 – 6 – 9– 8 19.05 km

8 – 5 – 4 – 6 – 1 – 9– 8 30.60 km

8 – 5 – 6 – 1 – 4 – 9– 8 33.20 km

8 – 5 – 6 – 4 – 1 – 9– 8 33.40 km

8 – 6 – 1 – 4 – 5 – 9– 8 28.70 km

8 – 6 – 1 – 5 – 4 – 9– 8 27.90 km

8 – 6 – 4 – 1 – 5 – 9– 8 34.10 km

8 – 6 – 4 – 5 – 1 – 9– 8 32.00 km

8 – 6 – 5 – 1 – 4 – 9– 8 33.90 km

8 – 6 – 5 – 4 – 1 – 9– 8 31.80 km

Although it will most likely not to be a case for ‘Jasur’ route

optimization problem, the author tries to solve the original

traveling salesman problem where salesman need to visit all

location in the city. Applying the algorithm to all ten locations

in Purwakarta City, the author gets that one can travel to all ten

locations only with 19.85 km distance by starting at Yogya

Department Store.

Fig. 14. Finding the Shortest Hamilton Circuit

Source: Primary

\

Table IV

Finding Shortest Hamilton Circuit

Starting Location Distance

Purwakarta Station 20.45 km

‘Mie Gacoan’ 20.25 km

Yogya Department Store 19.05 km

Pasar Rebo Market 23.35 km

‘Baso Cepot’ 24.70 km

STS Sadang Square 21.35 km

Al Ghazali Primary School 21.25 km

Sambal Hejo SHSD Restaurant 24.70 km

Sadang Sari Housing Complex 20.25 km

R.E. Martadinata Road (House) 24.60 km

Fortunately, the outcomes of both cases align with the

manually ordered result. However, it's noteworthy that the

algorithmic results may not always be the most optimal, given

that the Nearest Neighbor Algorithm operates as a greedy

approach for solving the traveling salesman problem. This

approach focuses on selecting the best option at each step

without considering potential superior route possibilities in the

subsequent steps.

As the number of locations visited increases, manual ordering

becomes impractical for humans. Even computers, when tasked

with manual ordering, face the challenge of dealing with O(n!)

complexity to obtain the most optimal routes. Hence, algorithms

like this are developed to provide efficient solutions to such

problems.

V. CONCLUSION

Based on the discussion and experimentation with the

provided cases, it can be concluded that the Traveling Salesman

Problem algorithm proves beneficial in determining the most

optimal route for the 'Jasur' errands service with multiple stops.

This optimization aids couriers in fulfilling customer requests

more swiftly and cost-effectively.

Given the constraints of limited time, capabilities, and

resources, this paper has inherent limitations and a narrow

scope, leaving ample room for enhancements and further

development. Exploring alternative TSP approaches, such as the

Greedy Heuristic Algorithm, Branch and Bound Algorithm, or

other modern techniques, may yield more optimal route

suggestions for a larger number of locations or vertices.

Additionally, addressing the problem in real-time with

considerations for factors like traffic, market crowd, or

congestion could enhance the overall solution.

VI. APPENDIX

The algorithm used in this paper can be accessed through

https://github.com/shulhajws/JasurRouteOptimization.git

VII. ACKNOWLEDGMENT

The author expresses gratitude to Allah SWT for His

blessings, enabling the completion of this paper. The author

would also like to especially thank the lecturer of the IF2120

Discrete Mathematics course, Mrs. Fariska Zakhralativa

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Ruskanda S.T., M.T, for her inspiring and dedicated teaching.

Special thanks to Dr. Ir. Rinaldi Munir, M.T., and all lecturers

of IF2120 for providing plenty sources on Discrete

Mathematics courses as this paper would not have been possible

without them.

The author acknowledges the contributions of all those

involved in the creation of this paper, especially to senior

students and the owners of the referenced materials mentioned,

as their assistance was crucial for the completion of this paper.

The author acknowledges the presence of imperfections in this

work and welcomes suggestions and critiques for future

improvement.

REFERENCES

[1] B. Kell, “Branch-and-bound algorithm for the traveling salesman problem,

” 21-257 Models and Methods For Optimization Carnegie Mellon

University, 2014. [Online]. Available:
https://www.math.cmu.edu/~bkell/21257-2014f/tsp.pdf. Accessed on

December 9, 2023.

[2] K. H. Rosen, Discrete Mathematics and Its Applications Seventh Edition.
New York, America: McGraw-Hill, 2017.

[3] R. Munir, “Graf Bagian 1,” IF2120 Matematika Diskrit, 2023. [Online].

Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-
2024/19-Graf-Bagian1-2023.pdf. Accessed on December 9, 2023.

[4] R. Munir, “Graf Bagian 2,” IF2120 Matematika Diskrit, 2023. [Online].

Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-
2024/20-Graf-Bagian2-2023.pdf. Accessed on December 9, 2023.

[5] R. Munir, “Graf Bagian 3 IF2120 Matematika Diskrit, 2023. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/21-Graf-Bagian3-2023.pdf. Accessed on December 9, 2023.

[6] H. Abdulkarim and I. F. Alshammari, “Comparison of Algorithms for
Solving Traveling Salesman Problem,” International Journal of

Engineering and Advanced Technology, August 2015, vol. 4 no. 6.

Available:
https://www.researchgate.net/publication/280597707_Comparison_of_Al

gorithms_for_Solving_Traveling_Salesman_Problem. Accessed on

December 10, 2023.
[7] "Travelling Salesman Problem (Greedy Approach)," GeeksforGeeks,

January 2022. [Online]. Available:

https://www.geeksforgeeks.org/travelling-salesman-problem-greedy-
approach/. Accessed on December 10, 2023.

STATEMENT

I hereby declare that the paper I have written is my own work,

not a reproduction or translation of someone else's paper, and

is not plagiarized.

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, December 11th, 2023

13522087 Shulha

